"Implementation of Quality Tools to improve infection-control in El-Nasr specialized hospital for children"

Authors

Prof Dr. Heba Youssef: professor of Forensic Medicine and Clinical Toxicology faculty of medicine PSU

Aya Tiaseer El-Dawody

Aya El-Sayed Nagib

Gehad El-Sayed El-Araby Hamdy

Eman Shreif Mostafa

Hadeer Eid Zahran

Norhan Magdy Qassem
Abstract:
This descriptive analytic study is a part of a nation-wide project aiming at assessment the pattern of current clinical practice in Increased incidence of surgical site infections in the inpatient ward at El-Nasr hospital in Port Said Governorate and to compare this pattern with standard international guidelines and Core components for infection prevention and control programmers fever, chills, pus from the wound site, Signs of infection at the wound site (pain, redness, delayed healing, redness, or tenderness) etc. The study included 300 clinically of patients with increasing of infection, that lead to your healthcare provider will prescribe antibiotics to fight the infection in Port Said Governorate. Data was collected between September 2020 and December 2020. We concluded that further work is needed to optimize and prevention of infection patients according to evidence-based clinical practice guidelines.

Keywords
Infection, control, prevention, safety and health.

Introduction

El Nasr Children's Specialized Hospital in Port Said joined the new comprehensive health insurance system within 7 hospitals in the governorate, after it had been renovated and developed its medical equipment and staff.

The hospital is a gigantic medical edifice that serves the governorates and cities of the Canal, and it was currently established on the land of Al-Nasr Hospital, whose buildings have been deserted for more than 18 years. The best medical services for beneficiaries within the comprehensive health insurance system, in accordance with the approved Egyptian standards (Elwatan news2021).
The hospital is a three-floor building that has a total of 68 beds. It has an emergency department (ED), a cardiothoracic intensive care unit (ICU) for adult patients, a cardiac care unit, a neonatal intensive care unit, a pediatric intensive care unit, an operation rooms (OR), a cardiac catheterization unit, a pediatric chemotherapy unit, a pediatric hemodialysis unit, an inpatient department, and an outpatient clinic complex. The human power consists of 180 physicians, 89 pharmacists, 200 nurses, 19 chemists, 13 assistants, 119 administrative clerks and 30 laborers. According to the mission statement of the hospital, the hospital aspires to be one of the leading medical centers in the field of specialized healthcare in Egypt and the Middle East. The message of the hospital is to provide distinguished, advanced and safe medical services of high quality in accordance with national standards through continuous medical education and training for workers to obtain the satisfaction of the service users.

Aim of the Work

The aims of this project are to:

1. Apply validated quality tools to assess the problems in the El-Nasr hospital’s workflow that can lead to the provision of sub-optimal service.
2. Prioritize the healthcare problems based on severity and frequency, according to validated tools.
3. Apply quality improvement tools in the alleviation of detected healthcare problems.

Methodology

Target Population

This quality improvement program was done at el-Nasr Hospital. It involved all the hospital departments, in the period between September and December 2020. Initially, the workgroup held a brainstorming session to reach a list of the problems that face the hospital’s workflow.
Formulation of multidisciplinary team

1. The medical Director (team leader)
2. Head of ICU department
3. Head of infectious control department
4. Quality coordinator
5. Head of nurses
6. ICU head nurse.
7. Medical secretary as team secretary
8. Administrative and financial manager
9. Head of quality

The resulting list included:

1. Hand washing.
2. Failure to comply with infection control standards.
3. Preparation of the patient before the operation.
4. The patient past history.
5. Lack of awareness of policies.
6. Lack of nursing in the central sterilization department.
7. The patient connections.
8. Reprocessing machines and consumables.

Using the quality tools:

1-Identify the problem

Increased the incidence rate of SSI in the inpatient department and intensive care unit (ICU) between September and October 2020.

Mission

Decreasing the incidence rate of SSI in the inpatient department and intensive care unit (ICU) between November and December 2020.
1- Flow chart:

Flow Chart of Process

Patient selected – labeled “SSI Protocol” in OT Reservation System

Surgical Site Infection Proforma Form - attached (pink)

OT Attendants – Hair Removal

Anesthetists – Antibiotics

PACU – Glucose & Temperature Monitoring

ICU/ HIGH D/ GENERAL WARD – Glucose Monitoring

Day Surgery Ward – Glucose Monitoring

Surgical Site Infection Proforma Form - Collected

HOME

2- Fishbone diagram:

The working team held a meeting in the form of a brainstorming session, in order to numerate the potential causes of the increased incidence of SSI in inpatient department and ICU. The following chart was done:
Risk is a Myriad Event
SSI Fishbone Diagram

Pre-operative Factors
- Lack of hand hygiene
- Patient body colonization
- Lack of pre-op shower

Peri-operative Team Factors
- Lack of traffic control
- Improper surgical hand antisepsis
- Improper surgical attire
- Instrument sterilization
- Use of staples or steri-strips

Organizational and Management Factors
- Contaminated environment
- Inadequate surgical prophylaxis
- Poor communication among team
- Surgical irrigation
- Non-coated sutures

Patient Factors
- MRSA or MISA nasal colonization
- Infection at another site
- Use of drains

Surgeon Factors
- Obese
- Diabetic

Work Environmental Factors
- Poor staff levels
- Poor surgical technique
- Design, availability and maintenance of equipment
- Contaminated environment

Care Delivery problems (CDPs)
- Lack of discontinuation of antibiotics at 24 hrs
- Workload and shift patterns
- Contaminated environment
- Inadequate staffing for post-op care

Environment
- Operating room
- Post-op cannulation
- Pre-op: showers

Procedure
- Surgical technique
- Operating room
- Drains/Urinary Catheter
- Post-op haematoma
- Blood loss
- Dressing (time & type)

Equipment
- Storage of equipment
- Drainage systems

Surgical Site Infection
- Smoking
- ASA score
- Nutritional Status
- Surgical site hair removal by shaving
- Pressure ulcer
- Diabetic mellitus

- Lack of awareness
- Inadequate Aseptic technique
- Cross Infection
- attire
- Other patients

Patients

Healthcare providers
After root cause analysis, the team held a meeting, and a solution was suggested for the first 4 problems in a brainstorming session. The results were as follows:

Table (1): Lack of nurse training on SSI policies and protocols

<table>
<thead>
<tr>
<th>Lack of nurse training on SSI policies and protocols</th>
<th>Distributing infection control policies and procedures within ICU and inpatient ward</th>
<th>Implementing a nursing training program about infection control policies and procedures</th>
<th>Holding on-site tests to assess the implementation of policies and procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Time</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Impact on problem</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Resistance</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Risk</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>42</td>
<td>37</td>
</tr>
</tbody>
</table>

The problem: Lack of nurse training on SSI policies and protocols.

Solution: Implementing a nursing training program about infection control policies and procedures.
Table (2): Lack of implementation of SSI protocols and policies

<table>
<thead>
<tr>
<th>Lack of implementation of SSI protocols and policies</th>
<th>Distributing SSI policies and procedures within ICU and inpatient department</th>
<th>Implementing a physician and nursing training program about SSI policies and procedures</th>
<th>Preparation of printed material prepared by ICU to raise awareness about SSI policies and procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Impact on problem</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Resistance</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Risk</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>37</td>
<td>38</td>
</tr>
</tbody>
</table>

The problem: Lack of implementation of SSI protocols and policies

Solution: Distributing SSI policies and procedures within ICU and inpatient department.

A project assessment meeting was held. The Statistics were reviewed in cooperation with infection control team.

The statistics were as follows:

Infection prevalence rates of SSI from September 2020 to December 2020 have decreased from 6% to 0%.
Causes of surgical site infections in hospitals depend on type of surgery. Signs and symptoms appear 5-7 days after surgery and include erythema, local pain, pus / discharge from the wound, or persistent fever. Primary prevention is the ideal way to reduce surgical site infections, with many evidence-based interventions possible. Any infection at the surgical site should be monitored regularly, with any sutures removed where possible, any pus drained appropriately, and experimental antibiotics prescribed.

Introduction:

A Surgical site infection (SSI) is an infection that occurs in the incision resulting from an invasive surgical procedure. SSI is a leading cause of hospital morbidity, increasing ICU admission rates and increasing mortality rates. Primary management is prevention through good surgical technique and improvement of the patient's condition.

Definition of SSI:

Surgical site infections are defined as infections that occur 30 days after surgery and infection appears to be related to surgery.

Surgical site infection pathogenesis

<table>
<thead>
<tr>
<th>Endogenous</th>
<th>Exogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patient flora (skin, mucus membranes).</td>
<td>• Surgical team (breaks in aseptic technique, inadequate hand hygiene).</td>
</tr>
<tr>
<td></td>
<td>• OR environment and ventilation.</td>
</tr>
<tr>
<td></td>
<td>• Tools, equipment, materials in OR.</td>
</tr>
</tbody>
</table>
Incidence of surgical site infections

- In the United States, the incidence of SSI is monitored by the National Nosocomial Infections Surveillance (NNIS) system and the National Hospital Discharge Survey, both sponsored by the CDC. A study by Klevens RM et al determined that 244,385 SSIs were reported in U.S. hospitals in 2020, accounting for 20% of all healthcare-associated infections and nearly 2% of all monitored surgical procedures.

Clinical Features

- The signs and symptoms appear 5-7 days after surgery and can develop after 3 weeks and include: local pain, discharge from the wound, tenderness, fever, swelling and redness.

Classification of SSI

1. Superficial incisional surgical site infection: it occurs within the skin or subcutaneous tissue; it observed at least one sign or symptom of clinical infection: localized pain, edema, erythema and warmth.
2. Deep incisional surgical site infection: it involves deep soft tissues such as muscle within incision and it must fulfill one of the following criteria: fever greater than 38°C, edema, localized pain, abscess or other evidence of infection

Risk factors for developing SSI

- Patient Factors;
 1- Extreme of ages.
 2- Diabetic patients.
 3- Smoking.
 4- Immune disease.
 5- Obesity.
 6- Malnutrition.
 7- Length of preoperative stay.
Treatment of SSI

1. Remove the sutures in the infected part.
2. Take wound swab for MCS.
3. Take broad spectrum antibiotics based on the MCS result.
4. Frequent wound dressing according to the infection degree.
5. Correct anemia.

Prevention of SSI

Preoperative:
- Full body wash.
- Prepare surgical site immediately before incision.
- Decontaminate hands.
- Remove hair on table (with electric clippers if available).

Perioperative:
- Maintain saturation > 95%.
- Monitor and correct blood glucose.
- Maintain normothermia.

Antibiotics:
- Use prophylactically surgery.
- Select according guidelines based on operation and local resistance patterns.
- Administer IV within 60 minutes before incision.
- Repeat dose if needed.
- Don't routinely continue after 24 hours.

Conclusion

Through the research, we concluded that infection prevalence rates decreased from 6% to 0% in the month of December 2020.

Training programs were made for doctors and nursing and familiarized them with the standards for fighting infection and the possibility of applying policies and protocols surgery site infection, and training continued on the correct methods of washing hands and how to
prepare the patient before the operation. The methods are correct and the entire patient history has been taken for the patient.

The number of nurses in the central sterilization department has been increased and training on re-treatment policies for machines and disposables.

Recommendation

1. Review of records to monitor SSI by infection control team, in cooperation with quality team.

2. Reviewing monthly statistics prepared by infection control department in the inpatient wards.

3. Monitoring the operational skills of ICU nursing staff, and distributing questionnaire to detect defects and training requirements.

4. Emphasizing the importance of infection control team in solving the problem.

5. The importance of cooperation with training team, and asking for their input and help in future projects.

6. Discussing the application of the problem in other departments in the hospital, in order to raise the quality of nursing staff.

Summary

After study and research, we have summarized the most important points mentioned in the research:
1- The prevalence of surgical segment infection has decreased to 0%.

2- Physicians and nurses have been trained on the basics and procedures for infection control and how to prepare the patient before the operation and take the patient’s full history.

3- The surgeries were performed based on scientific references and guidelines.

4- Increasing awareness of infection control policies related to surgical section infection.

5- The number of nurses in the central sterilization department has been increased and they have been trained on how to reprocess machines and tools.

References

- Lee SY, Kuti JL, Nicolau DP. Antimicrobial management of complicated skin and skin structure infections in the era of

- www.surfacine.com. 08/06/02.

• Ibid.
• Watson SK, Lichtenberg DA, Wainwright H. Technology vs. the most common nosocomial infection. Infection Control Today. www.infectioncontroltoday.com/articles/081topics.html.
• www.acponline.org/journals/annals/15aug97/cathedit.htm.
• Biofilm and Infected Wounds by Samantha Kuplicki, MSN, APRN-CNS, AGCNS-BC, CWS, CWCN, CFCN https://www.woundsource.com/blog/classification-surgical-site-infections